Articles - Data Science and ML unlocking new frontiers in claims


One way to think about the application of data science and machine learning is that it’s a tool to aid the conversion of information (data) into action. In this context, machine learning is applied to enable better and more efficient decisions, as well as identifying previously hidden risks and opportunities. Essentially, data science helps an insurer to perform significantly better, whatever their goals.

 By Pardeep Bassi, Global Proposition Leader in Data Science, WTW.

 The application of advanced analytics is already well ingrained in the world of insurance pricing and underwriting. However, it is only more recently that it has begun to exert more influence in claims operations.

 In the overall insurance value chain, substantial resources and effort have been applied to better understand a customer’s risk and purchasing behaviours to help charge the most appropriate price. Fresh benefits still to be mined in the pricing and underwriting space are relatively scarce. In contrast, huge untapped value is waiting to be realised by insurers reducing their claims spend or better understanding and optimising their claims processes.

 Low hanging fruit
 Although machine learning is increasingly recognised as a tool to reduce claims costs and deliver significant value to an insurer, this remains an area many have yet to realise value. This means there is plenty of low hanging fruit to be picked in the claims space, such as the benefits to be realised from providing a better, more tailored, faster service to the customer. These benefits can, for example, be seen by the speed at which claims are settled and how an insurer’s Net Promoter Score (NPS), the global benchmark for client satisfaction, can be improved.

 Claims processing already uses a lot of external data, including integration into third party sources such as operators in the automotive sales market for vehicle values, demographics and sociodemographic information, and various other vehicle information to inform repair costs. Machine learning makes it possible to link all these separate threads together and help insurance companies more accurately predict future outcomes and identify earlier changing experience.

 Internal impact
 There is also the positive impact on the internal organisation that has the potential to be equally transformational. Machine learning can be thought of as a tool, a superpower to help claims handlers and claims teams make better decisions. Individuals can upskill, new roles will be created, all helping provide measurable improvements to customers and vastly improved profitability.

 At the same time, it is important to understand that machine learning will not give the perfect answer to every question. Each individual algorithm built will have both strengths and weaknesses. That being said, it is still possible to build and improve models based on an understanding of these strengths and weaknesses. More importantly, it is by understanding how best to leverage what an insurer has, as well as how best this can be applied and integrated, that will determine the value gained.

 Collaborate or fail
 This is especially true when it comes to using data science to leverage unstructured data. Using an insurer’s deep domain claims expertise is key to shedding light on unstructured data and translating this into something which actually makes sense. On the application of data science in claims operations, by far the greatest risk in terms of success and failure is the ability of both sides to collaborate effectively. By bringing together an insurer’s in-house claims expertise with their data science and machine learning experts, it becomes far easier to approach problems in a way which leads to a joint successful solution.

 Near future
 It can be very tempting to focus on the short term and doing whatever is needed to make one solution work once. But it is worth keeping in mind the end state, where one insurer’s claims models will be competing against another insurer’s models. In a world where hundreds of models are competing, the ability to move at speed, scale for efficiency, and be the most sophisticated will be needed to succeed.

 Data science is not the absolute all-encompassing, magic solution to every issue an organisation will face. Instead, being able to fully leverage machine learning means bringing together a multi-disciplined team, that combines an insurer’s existing in-house claims knowledge with cutting-edge analytical and data capabilities to deliver next generation claims processing that optimises costs and transforms the customer experience.
 
 
  

Back to Index


Similar News to this Story

Actuarial Post Magazine Awards Winners Edition December 2024
Welcome to the Actuarial Post Awards 2024 winner’s edition and we hope you enjoy reading about their responses on having won their award. The awards
Guide to setting expense reserves under the new Funding Code
The new defined benefit (DB) funding code of practice (new Funding Code) requires all schemes to achieve funding levels that ensure low dependency on
Smooth(ing) Operator
Private equity can be a great asset. It’s generally the most significant way to have any real world impact as an investor (eg infrastructure assets li

Site Search

Exact   Any  

Latest Actuarial Jobs

Actuarial Login

Email
Password
 Jobseeker    Client
Reminder Logon

APA Sponsors

Actuarial Jobs & News Feeds

Jobs RSS News RSS

WikiActuary

Be the first to contribute to our definitive actuarial reference forum. Built by actuaries for actuaries.